Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648288

RESUMO

Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.

2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163415

RESUMO

Metallothioneins (MTs) constitute a heterogeneous family of ubiquitous metal ion-binding proteins. In plants, MTs participate in the regulation of cell growth and proliferation, protection against heavy metal stress, oxidative stress responses, and responses to pathogen attack. Despite their wide variety of functions, the role of MTs in symbiotic associations, specifically nodule-fabacean symbiosis, is poorly understood. Here, we analyzed the role of the PvMT1A gene in Phaseolus vulgaris-Rhizobium tropici symbiosis using bioinformatics and reverse genetics approaches. Using in silico analysis, we identified six genes encoding MTs in P. vulgaris, which were clustered into three of the four classes described in plants. PvMT1A transcript levels were significantly higher in roots inoculated with R. tropici at 7 and 30 days post inoculation (dpi) than in non-inoculated roots. Functional analysis showed that downregulating PvMT1A by RNA interference (RNAi) reduced the number of infection events at 7 and 10 dpi and the number of nodules at 14 and 21 dpi. In addition, nodule development was negatively affected in PvMT1A:RNAi transgenic roots, and these nodules displayed a reduced nitrogen fixation rate at 21 dpi. These results strongly suggest that PvMT1A plays an important role in the infection process and nodule development in P. vulgaris during rhizobial symbiosis.


Assuntos
Metalotioneína/metabolismo , Phaseolus , Proteínas de Plantas/metabolismo , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas , Simbiose , Phaseolus/metabolismo , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia
3.
BMC Plant Biol ; 21(1): 274, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130630

RESUMO

BACKGROUND: Rhizobium-legume symbiosis is a specific, coordinated interaction that results in the formation of a root nodule, where biological nitrogen fixation occurs. NADPH oxidases, or Respiratory Burst Oxidase Homologs (RBOHs) in plants, are enzymes that generate superoxide (O2 •-). Superoxide produces other reactive oxygen species (ROS); these ROS regulate different stages of mutualistic interactions. For example, changes in ROS levels are thought to induce ROS scavenging, cell wall remodeling, and changes in phytohormone homeostasis during symbiotic interactions. In common bean (Phaseolus vulgaris), PvRbohB plays a key role in the early stages of nodulation. RESULTS: In this study, to explore the role of PvRbohB in root nodule symbiosis, we analyzed transcriptomic data from the roots of common bean under control conditions (transgenic roots without construction) and roots with downregulated expression of PvRbohB (by RNA interference) non-inoculated and inoculated with R. tropici. Our results suggest that ROS produced by PvRBOHB play a central role in infection thread formation and nodule organogenesis through crosstalk with flavonoids, carbon metabolism, cell cycle regulation, and the plant hormones auxin and cytokinin during the early stages of this process. CONCLUSIONS: Our findings provide important insight into the multiple roles of ROS in regulating rhizobia-legume symbiosis.


Assuntos
Carbono/metabolismo , Ciclo Celular , NADPH Oxidases/metabolismo , Phaseolus/enzimologia , Nodulação , Raízes de Plantas/enzimologia , Simbiose/fisiologia , Phaseolus/genética , Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizobium/fisiologia , Transcriptoma
4.
Genes (Basel) ; 11(7)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674446

RESUMO

The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume-rhizobia symbiosis.


Assuntos
Fabaceae/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Phaseolus/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/microbiologia
5.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183068

RESUMO

Actin plays a critical role in the rhizobium-legume symbiosis. Cytoskeletal rearrangements and changes in actin occur in response to Nod factors secreted by rhizobia during symbiotic interactions with legumes. These cytoskeletal rearrangements are mediated by diverse actin-binding proteins, such as actin depolymerization factors (ADFs). We examined the function of an ADF in the Phaseolus vulgaris-rhizobia symbiotic interaction (PvADFE). PvADFE was preferentially expressed in rhizobia-inoculated roots and nodules. PvADFE promoter activity was associated with root hairs harbouring growing infection threads, cortical cell divisions beneath root hairs, and vascular bundles in mature nodules. Silencing of PvADFE using RNA interference increased the number of infection threads in the transgenic roots, resulting in increased nodule number, nitrogen fixation activity, and average nodule diameter. Conversely, overexpression of PvADFE reduced the nodule number, nitrogen fixation activity, average nodule diameter, as well as NODULE INCEPTION (NIN) and EARLY NODULIN2 (ENOD2) transcript accumulation. Hence, changes in ADFE transcript levels affect rhizobial infection and nodulation, suggesting that ADFE is fine-tuning these processes.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Rhizobium/metabolismo , Fatores de Despolimerização de Actina/genética , Fixação de Nitrogênio , Phaseolus/genética , Phaseolus/microbiologia , Proteínas de Plantas/genética , Rhizobium/genética
6.
BMC Genomics ; 20(1): 800, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684871

RESUMO

BACKGROUND: Reactive oxygen species (ROS) are generated by NADPH oxidases known as respiratory burst oxidase homologs (RBOHs) in plants. ROS regulate various cellular processes, including the mutualistic interactions between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. Rboh is a multigene family comprising nine members (RbohA-I) in common bean (Phaseolus vulgaris). The RNA interference-mediated silencing of RbohB (PvRbohB-RNAi) in this species diminished its ROS production and greatly impaired nodulation. By contrast, the PvRbohB-RNAi transgenic roots showed early hyphal root colonization with enlarged fungal hypopodia; therefore, we proposed that PvRbohB positively regulates rhizobial infection (Rhizobium tropici) and inhibits AM colonization by Rhizophagus irregularis in P. vulgaris. RESULTS: To corroborate this hypothesis, an RNA-Seq transcriptomic analysis was performed to identify the differentially expressed genes in the PvRbohB-RNAi roots inoculated with Rhizobium tropici or Rhizophagus irregularis. We found that, in the early stages, root nodule symbioses generated larger changes of the transcriptome than did AM symbioses in P. vulgaris. Genes related to ROS homeostasis and cell wall flexibility were markedly upregulated in the early stages of rhizobial colonization, but not during AM colonization. Compared with AM colonization, the rhizobia induced the expression of a greater number of genes encoding enzymes involved in the metabolism of auxins, cytokinins, and ethylene, which were typically repressed in the PvRbohB-RNAi roots. CONCLUSIONS: Our research provides substantial insights into the genetic interaction networks in the early stages of rhizobia and AM symbioses with P. vulgaris, as well as the differential roles that RbohB plays in processes related to ROS scavenging, cell wall remodeling, and phytohormone homeostasis during nodulation and mycorrhization in this legume.


Assuntos
Perfilação da Expressão Gênica , Glomeromycota/fisiologia , NADPH Oxidases/genética , Phaseolus/genética , Phaseolus/microbiologia , Raízes de Plantas/genética , Rhizobium tropici/fisiologia , Parede Celular/metabolismo , Phaseolus/citologia , Phaseolus/enzimologia , Raízes de Plantas/microbiologia , Transdução de Sinais/genética , Simbiose
7.
Front Microbiol ; 10: 3044, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010100

RESUMO

Microbial symbionts account for survival, development, fitness and evolution of eukaryotic hosts. These microorganisms together with their host form a biological unit known as holobiont. Recent studies have revealed that the holobiont of agaves and cacti comprises a diverse and structured microbiome, which might be important for its adaptation to drylands. Here, we investigated the functional signatures of the prokaryotic communities of the soil and the episphere, that includes the rhizosphere and phyllosphere, associated with the cultivated Agave tequilana and the native and sympatric Agave salmiana, Opuntia robusta and Myrtillocactus geometrizans by mining shotgun metagenomic data. Consistent with previous phylogenetic profiling, we found that Proteobacteria, Actinobacteria and Firmicutes were the main represented phyla in the episphere of agaves and cacti, and that clustering of metagenomes correlated with the plant compartment. In native plants, genes related to aerobic anoxygenic phototrophy and photosynthesis were enriched in the phyllosphere and soil, while genes coding for biofilm formation and quorum sensing were enriched in both epiphytic communities. In the episphere of cultivated A. tequilana fewer genes were identified, but they belonged to similar pathways than those found in native plants. A. tequilana showed a depletion in several genes belonging to carbon metabolism, secondary metabolite biosynthesis and xenobiotic degradation suggesting that its lower microbial diversity might be linked to functional losses. However, this species also showed an enrichment in biofilm and quorum sensing in the epiphytic compartments, and evidence for nitrogen fixation in the rhizosphere. Aerobic anoxygenic phototrophic markers were represented by Rhizobiales (Methylobacterium) and Rhodospirillales (Belnapia) in the phyllosphere, while photosystem genes were widespread in Bacillales and Cyanobacteria. Nitrogen fixation and biofilm formation genes were mostly related to Proteobacteria. These analyses support the idea of niche differentiation in the rhizosphere and phyllosphere of agaves and cacti and shed light on the potential mechanisms by which epiphytic microbial communities survive and colonize plants of arid and semiarid ecosystems. This study establishes a guideline for testing the relevance of the identified functional traits on the microbial community and the plant fitness.

8.
Front Microbiol ; 7: 150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904020

RESUMO

Cactaceae represents one of the most species-rich families of succulent plants native to arid and semi-arid ecosystems, yet the associations Cacti establish with microorganisms and the rules governing microbial community assembly remain poorly understood. We analyzed the composition, diversity, and factors influencing above- and below-ground bacterial, archaeal, and fungal communities associated with two native and sympatric Cacti species: Myrtillocactus geometrizans and Opuntia robusta. Phylogenetic profiling showed that the composition and assembly of microbial communities associated with Cacti were primarily influenced by the plant compartment; plant species, site, and season played only a minor role. Remarkably, bacterial, and archaeal diversity was higher in the phyllosphere than in the rhizosphere of Cacti, while the opposite was true for fungi. Semi-arid soils exhibited the highest levels of microbial diversity whereas the stem endosphere the lowest. Despite their taxonomic distance, M. geometrizans and O. robusta shared most microbial taxa in all analyzed compartments. Influence of the plant host did only play a larger role in the fungal communities of the stem endosphere. These results suggest that fungi establish specific interactions with their host plant inside the stem, whereas microbial communities in the other plant compartments may play similar functional roles in these two species. Biochemical and molecular characterization of seed-borne bacteria of Cacti supports the idea that these microbial symbionts may be vertically inherited and could promote plant growth and drought tolerance for the fitness of the Cacti holobiont. We envision this knowledge will help improve and sustain agriculture in arid and semi-arid regions of the world.

9.
New Phytol ; 209(2): 798-811, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467257

RESUMO

Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.


Assuntos
Agave/microbiologia , Microbiota , Biodiversidade , América Central , América do Norte , Filogenia , Filogeografia , Folhas de Planta , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Simbiose
10.
FEMS Yeast Res ; 12(5): 547-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22443138

RESUMO

One of the most important physicochemical factors that affect cell growth and development is pH, and living organisms have developed specific mechanisms to adapt to media with variable pH values. Most fungi posses a specific mechanism for such adaptation: the Pal/Rim pathway. To analyze the different metabolic processes regulated by this pathway, and its possible relationships with other physiological regulatory mechanisms, we analyzed the phenotype of a mutant in the PALB/RIM13 gene of the phytopathogenic fungus Ustilago maydis. The mutant displayed important alterations in the synthesis and organization of the cell wall and was affected in its response to stress, revealing its relationship with the MAPKC pathway involved in maintaining the integrity of the cell wall, and the stress response pathway, but not with the HOG pathway. An important observation was that the mutant, in contrast to the wild-type strain, was unable to maintain a constant intracellular pH, suggesting that probably the main function of the Pal/Rim pathway, in collaboration with other regulatory mechanisms, is to maintain a constant intracellular pH, despite the changes occurring in the environment.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , Transdução de Sinais , Ustilago/genética , Ustilago/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Meios de Cultura/química , Citosol/química , Deleção de Genes , Concentração de Íons de Hidrogênio , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...